  | 
            File:Moebius strip.svg is a vector version of this file.  It should be used in place of this raster image when superior. 
             
            File:Moebius Surface 1 Display Small.png     File:Moebius strip.svg  
             
            For more information about vector graphics, read about  Commons transition to SVG.  There is also  information about MediaWiki's support of SVG images. 
             
            
             
            | 
           
            
            | 
          
         
          
         
        
        
         
                  Mathematical Function Plot | 
         
         
          | Description | 
          Moebius Strip, 1 half-turn (n=1) | 
         
         
          | Equation | 
          : 
              
              
            
           | 
         
         
          | Co-ordinate System | 
           Cartesian ( Parametric Plot) | 
         
         
          | u Range | 
          0 .. 4π | 
         
         
          | v Range | 
          0 .. 0.3 | 
         
        
        Mathematica Code 
        
         
             | 
          Please be aware that at the time of uploading (15:27, 19 June 2007 (UTC)), this code may take a significant amount of time to execute on a consumer-level computer. | 
             | 
         
        
        
         
             | 
          This uses Chris Hill's antialiasing code to average pixels and produce a less jagged image. The original code can be found  here. | 
             | 
         
        
        This code requires the following packages:
< 
MoebiusStrip[r_:1] =
    Function[
      {u, v, n},
      r {Cos[u] + v Cos[n u/2]Cos[u],
          Sin[u] + v Cos[n u/2]Sin[u],
          v Sin[n u/2],
          {EdgeForm[AbsoluteThickness[4]]}}];
aa[gr_] := Module[{siz, kersiz, ker, dat, as, ave, is, ar},
    is = ImageSize /. Options[gr, ImageSize];
    ar = AspectRatio /. Options[gr, AspectRatio];
    If[! NumberQ[is], is = 288];
    kersiz = 4;
    img = ImportString[ExportString[gr, "PNG", ImageSize -> (
      is kersiz)], "PNG"];
    siz = Reverse@Dimensions[img[[1, 1]]][[{1, 2}]];
    ker = Table[N[1/kersiz^2], {kersiz}, {kersiz}];
    dat = N[img[[1, 1]]];
    as = Dimensions[dat];
    ave = Partition[Transpose[Flatten[ListConvolve[ker, dat[[All, All, #]]]] \
& /@ Range[as[[3]]]], as[] - kersiz + 1];
    ave = Take[ave, Sequence @@ ({1, Dimensions[ave][[#]], 
    kersiz} & /@ Range[Length[Dimensions[ave]] - 1])];
    Show[Graphics[Raster[ave, {{0, 0}, siz/kersiz}, {0, 255}, ColorFunction ->
     RGBColor]], PlotRange -> {{0, siz[[1]]/kersiz}, {
  0, siz[]/kersiz}}, ImageSize -> is, AspectRatio -> ar]
    ]
deg = 1;
gr = ParametricPlot3D[Evaluate[MoebiusStrip[][u, v, deg]],
      {u, 0, 4π},
      {v, 0, .3},
      PlotPoints -> {99, 3},
      PlotRange -> {{-1.3, 1.3}, {-1.3, 1.3}, {-0.7, 0.7}},
      Boxed -> False,
      Axes -> False,
      ImageSize -> 220,
      PlotRegion -> {{-0.22, 1.15}, {-0.5, 1.4}},
      DisplayFunction -> Identity
      ];
finalgraphic = aa[gr];
Export["Moebius Surface " <> ToString[deg] <> ".png", finalgraphic]
        
       
 
       
        The following pages on Schools Wikipedia link to this image (list may be incomplete):